Parseval Networks: Improving Robustness to Adversarial Examples

نویسندگان

  • Cisse Moustapha
  • Bojanowski Piotr
  • Grave Edouard
  • Dauphin Yann
  • Usunier Nicolas
چکیده

We introduce Parseval networks, a form of deep neural networks in which the Lipschitz constant of linear, convolutional and aggregation layers is constrained to be smaller than 1. Parseval networks are empirically and theoretically motivated by an analysis of the robustness of the predictions made by deep neural networks when their input is subject to an adversarial perturbation. The most important feature of Parseval networks is to maintain weight matrices of linear and convolutional layers to be (approximately) Parseval tight frames, which are extensions of orthogonal matrices to non-square matrices. We describe how these constraints can be maintained efficiently during SGD. We show that Parseval networks match the state-of-the-art in terms of accuracy on CIFAR-10/100 and Street View House Numbers (SVHN), while being more robust than their vanilla counterpart against adversarial examples. Incidentally, Parseval networks also tend to train faster and make a better usage of the full capacity of the networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parseval Networks: Improving Robustness to Adversarial Examples

We introduce Parseval networks, a form of deep neural networks in which the Lipschitz constant of linear, convolutional and aggregation layers is constrained to be smaller than 1. Parseval networks are empirically and theoretically motivated by an analysis of the robustness of the predictions made by deep neural networks when their input is subject to an adversarial perturbation. The most impor...

متن کامل

L2-Nonexpansive Neural Networks

This paper proposes a class of well-conditioned neural networks in which a unit amount of change in the inputs causes at most a unit amount of change in the outputs or any of the internal layers. We develop the known methodology of controlling Lipschitz constants to realize its full potential in maximizing robustness: our linear and convolution layers subsume those in the previous Parseval netw...

متن کامل

Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients

Deep neural networks have proven remarkably effective at solving many classification problems, but have been criticized recently for two major weaknesses: the reasons behind their predictions are uninterpretable, and the predictions themselves can often be fooled by small adversarial perturbations. These problems pose major obstacles for the adoption of neural networks in domains that require s...

متن کامل

Less is More: Culling the Training Set to Improve Robustness of Deep Neural Networks

Deep neural networks are vulnerable to adversarial examples. Prior defenses attempted to make deep networks more robust by either improving the network architecture or adding adversarial examples into the training set, with their respective limitations. We propose a new direction. Motivated by recent research that shows that outliers in the training set have a high negative influence on the tra...

متن کامل

Improving Transferability of Adversarial Examples with Input Diversity

Though convolutional neural networks have achieved stateof-the-art performance on various vision tasks, they are extremely vulnerable to adversarial examples, which are obtained by adding humanimperceptible perturbations to the original images. Adversarial examples can thus be used as an useful tool to evaluate and select the most robust models in safety-critical applications. However, most of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017